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1.1 It’s not rocket science, but I like it

How would you impress a stranger you meet at a party
with your intelligence? You might claim to be a brain
surgeon or a rocket scientist. Well Magnetic Resonance
(MR) is not rocket science, it’s better than that. MR
involves an amazing combination of advanced science
and engineering, including the use of superconductiv-
ity, cryogenics, quantum physics, digital and computer
technology – and all within the radiology department of
your local hospital. MR imaging has evolved from
unpromising beginnings in the 1970s to become nowa-
days the imaging method of choice for a large propor-
tion of radiological examinations and the ‘jewel in the
crown’ of medical technology. A modern MRI scanner is
shown in figure 1.1.

So what is it? It is an imaging method based princi-
pally upon sensitivity to the presence and properties of
water, which makes up 70% to 90% of most tissues. The
properties and amount of water in tissue can alter dra-
matically with disease and injury which makes MR very
sensitive as a diagnostic technique. MR detects subtle
changes in the magnetism of the nucleus, the tiny entity
that lies at the heart of the atom. This is probing deeper
than X-rays, which interact with the clouds or shells of
the electrons that orbit the nucleus. MR is a truly pow-
erful modality. At its most advanced, MR can be used
not just to image anatomy and pathology but to inves-
tigate organ function, to probe in vivo chemistry and
even to visualize the brain thinking.

In the early days, the scanners were the domain of the
physicists and engineers who invented and built them,
and the technique was called NMR imaging (NMR

stands for nuclear magnetic resonance). The cynics
may say that the technique really took off clinically
when the ‘N-word’ was dropped. This was sensible as
the term ‘nuclear’, although scientifically accurate,
implied a connection with nuclear energy and, in the
last of the cold war years, resonated in the public’s mind
with the spectre of nuclear weapons.

Because of the diversity of sciences and technologies
that gave birth to and continue to nurture MR, it is an
extremely hard subject to learn. A lifetime is not enough
to become expert in every aspect. Clinicians, technolo-
gists and scientists all struggle with the study of the
subject. The result is sometimes an obscurity of under-
standing or a dilution of scientific truth resulting in mis-
conceptions. This is why we have chosen to write this
book. Our aim is to introduce you to MR as a tool –
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Figure 1.1 Modern superconducting MR system. Courtesy of

Philips Medical Systems.



rather like learning to drive a car. Once you are confi-
dent on the road, we can then start to learn how the
engine works.

1.2 A brief history of medical imaging

Radiology began after the accidental discovery of ‘X-
rays’ by Roentgen in 1895. At about the same time
(1896) Becquerel and the Curies were discovering radio-
activity and radium and making possible the future
development of nuclear medicine. Within a couple of
years most of the basic techniques of radiography were
established, e.g. the use of fluorescent screens (Pupin
1896), contrast media (Lindenthal 1896), even the prin-
ciple of angiography. Early fluoroscopy entailed direct
viewing from a fluorescent plate, i.e. putting your head
in the main beam, a practice frowned upon today!
Unfortunately radiation protection followed slightly
too late for the pioneers of radiology. The next real tech-
nical breakthrough was the development of the image
intensifier in the 1950s, but the basis of conventional
radiography remained the same until the recent IT and
digital revolutions. Computed Tomography (CT) was a
huge breakthrough earning Hounsfield and Cormack
the Nobel Prize for medicine and physiology in 1979. X-
ray CT was unique in producing tomographic images or
slices of the living human body for the first time and
with a higher contrast than achievable by conventional
planar techniques. The combination of a moving X-ray
gantry and the computing power necessary to recon-
struct from projections made CT possible.

In nuclear medicine a similar evolution was occur-
ring, from the development of the gamma camera by
Anger in 1958 to tomographic imaging in the form of
Single Photon Emission Computed Tomography
(SPECT) and Positron Emission Tomography (PET)
which is ongoing today. Even now PET is not in
common clinical use although its ability to image
minute concentrations of metabolites is unique and
makes it a powerful research tool in the aetiology of
disease and effect of drugs.

Ultrasound was developed in the 1950s following the
development of SONAR in World War II and was unique
in involving no ionizing radiation and offering the pos-

sibility of safe, noninvasive imaging. Its ability to image
in real time and its sensitivity to flow, through the
Doppler effect, have been key factors in its widespread
role in obstetrics, cardiology, vascular disease and for
real-time biopsy guidance and minimally invasive
surgery.

The initial concept for the medical application of
NMR, as it was then called, originated with the discov-
ery by Raymond Damadian in 1971 that certain mouse
tumours displayed elevated relaxation times compared
with normal tissues in vitro. This exciting discovery
opened the door for a complete new way of imaging the
human body where the potential contrast between
tissues and disease was many times greater than that
offered by X-ray technology and ultrasound (figure 1.2).
At the same time developments in cryogenics, or the
study of very low temperatures, made the development
of whole-body superconducting magnets possible.
Damadian and his colleagues at the State University of
New York, starved of mainstream research funding,
went so far as to design and build their own supercon-
ducting magnet operating in their Brooklyn laboratory
and the first human body image by NMR is attributed to
them. There is some dispute about who actually is the
founder of modern Magnetic Resonance Imaging
(MRI), but one thing is certain, Damadian coined the
first MR acronym, namely FONAR (Field fOcussed
Nuclear mAgnetic Resonance). This set a trend, and you
can see the development of the acronym family tree in
chapter 12!

In 1973, in an article in Nature, Paul Lauterbur pro-
posed using magnetic field gradients to distinguish
between NMR signals originating from different loca-
tions. This is the basis of all modern MRI. Unfortunately
Lauterbur’s brilliant invention was not accompanied by
a brilliant acronym; he coined the obscure term ‘zeug-
matography’, meaning imaging from a joining together
(of the main field and the gradients). In contemporary
MR terms Lauterbur can be said to have invented fre-
quency encoding. Whilst the term ‘zeugmatography’
sunk without trace, fortunately the technique it
described has gone from strength to strength.

Selective excitation, or the sensitization of tomo-
graphic image slices, was invented at the University of
Nottingham, England in 1974 by Sir Peter Mansfield’s
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group, whilst in 1975 Richard Ernst’s group in Zurich
invented two-dimensional Fourier transform imaging
(2D FT). The first practical 2D FT imaging method,
dubbed ‘spin warp’, was developed by Edelstein and
Hutchison at the University of Aberdeen, Scotland in
1980. Many other researchers contributed to the early
development of MR, and in this short introduction it is
impossible to do justice to them all (see Further reading).

And what of the commercial development? EMI, the
creators of X-ray CT through Sir Godfrey Hounsfield,
were involved from very early on and Clow and Young
produced the first published human head image in
1978 (figure 1.3). EMI sold their research interest to
Picker International, now Marconi (recently sold to
Philips). The ‘Neptune’ 0.15T superconducting system
installed at the Hammersmith Hospital, London, was
the first commercial clinical system. Elsewhere in
Europe, Philips Medical Systems also dedicated sub-

stantial early investment (figure 1.4). General Electric
introduced high field systems in around 1984. The tech-
nique developed rapidly through the late 1980s to
become the method of choice for nontrauma neurolog-
ical scanning. By 1996 there were in excess of 10000
scanners worldwide.

Due to problems of low signal and high sensitivity to
motion, body MR did not really take off until the mid
1990s. The key factors were the development of fast
imaging techniques, particularly gradient echo, and
phased array coil technology. The 1990s also saw the
coming of age of earlier developments, namely cardiac
MRI and Echo Planar Imaging (EPI). EPI, which is the
fastest and one of the most cutting edge methods, was
actually one of the first imaging methods to be pro-
posed, by Sir Peter Mansfield. EPI is now extensively
used in neurological imaging through functional MRI
(fMRI) and diffusion imaging.

1.2 A brief history of medical imaging
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Figure 1.2 Raymond Damadian’s “Apparatus and method for detecting cancer in tissue”. US patent 3789832 filed 17 March

1972, issued 5 February 1974. Image from the US Patent and Trademark Office.



1.3 How to use this book

Everyone starts MRI with the same basic problem: it’s
like nothing else they’ve learnt in the past. All that
knowledge you have about radioactive isotopes and
film-screen combinations is useless to you now. Where
do you start? Most MRI books start at the beginning (a
very good place to start, according to the song), and
introduce protons, net magnetization, precession and
the Larmor equation all in the first three pages. We think
there is another way, starting at the end with the images

MR: What’s the attraction?
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Figure 1.3 First ever human head image using MRI at 0.1 T

from EMI Central Research Laboratories. For this image CT

type “back projection” was used. Courtesy of Ian Young.

Figure 1.4 Walker 0.1 T resistive magnet used by Philips in

the early development of MRI. Courtesy of Philips Medical

Systems.

The early history of NMR
‘Nuclear induction’, as it was first described, was dis-
covered in 1945, soon after the close of World War II,
by Bloch and independently by Purcell and Pound.
It is said that the development of radio commu-
nications in the war effort, to which Purcell had
contributed scientifically, was one of the factors
underpinning this important scientific discovery.
Another important factor, as in the development of
atomic physics, was the expulsion or fleeing of
European physicists from the Nazi regime, an exodus
that included Bloch and Bloembergen. What did
these MR pioneers discover? That you can detect a
signal (a voltage in a coil) when you place a sample in
a magnetic field and irradiate it with radiofrequency
(RF) energy of a certain frequency, the resonant or
Larmor frequency. The signal is produced by the
interaction of the sample nuclei with the magnetic
field. The spin echo was ‘stumbled upon’ by Hahn in
1949. He discovered that you could get a repeat of the
NMR signal at a delayed time by adding a second
burst of RF energy. That’s all you need to know for
now. So what were NMR researchers doing between
the forties and the seventies – that’s a long time in
cultural and scientific terms. The answer: they were
doing chemistry, including Lauterbur, a professor of
chemistry at the same institution as Damadian. NMR
developed into a laboratory spectroscopic technique
capable of examining the molecular structure of
compounds, until Damadian’s ground-breaking dis-
covery in 1971.



that are produced, which is much more useful if you’re
already working in the MR unit. After all, you don’t
expect to understand how the internal combustion
engine works before you learn to drive.

The book is divided into two parts. In part A you will
find everything you need to know about the basics of
MRI, but presented in reverse order. We start with things
you can touch and look at: the equipment you find in an
MR unit and what the images look like, using terms like
‘T1-weighted’ simply as labels. Later on we talk about
how the images are produced and finally we cover the
underlying physics. By that stage you will be able to link
these rather difficult concepts back to things which
matter – the images.

Part B contains more advanced topics, such as
cardiac MR and spectroscopy, in no particular order.
You don’t have to work right through part A before you
read these chapters, we just couldn’t fit them neatly into
the reverse order!

1.3 How to use this book
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The spin doctors: Nobel Laureates’ roll-call
(figure 1.5)
In 1952 Edward Purcell (Harvard) and Felix Bloch
(Stanford) jointly received the Nobel Prize for physics
‘for their development of new methods for nuclear
magnetic precision measurements and discoveries
in connection therewith’. Of Purcell’s discovery, the
Boston Herald reported that ‘it wouldn’t revolution-
ize industry or help the housewife’. Purcell himself
stated that ‘we are dealing not merely with a new tool
but a new subject which I have simply called nuclear
magnetism. If you will think of the history of ordinary
magnetism, the electronic kind, you will remember
that it has been rich in difficult and provocative prob-
lems and full of surprises.’ It seems that the Boston
Herald misjudged the importance of NMR!

Bloch, a Swiss-born Jew and friend of quantum
physicist Werner Heisenberg, quit his post in Leipzig
in 1933 in disgust at the Nazi’s expulsion of German
Jews (as a Swiss citizen, Bloch himself was exempt).
Bloch’s subsequent career at Stanford was crammed
with major contributions to physics and he has been
called ‘the father of solid state physics’.

Nicolaas Bloembergen, a Dutch citizen, was forced
to hide from the Nazis for the duration of the War,
reputedly living on boiled tulip bulbs, until becom-
ing Purcell’s first graduate student at Harvard two
months after the discovery of NMR. With Purcell and
Robert Pound he developed the theory of NMR relax-
ation, known now by their initials BPP. In 1981 he
won a Nobel Prize for his work in laser spectroscopy.

In 1991 Richard Ernst joined the MRI Nobel
Laureates ‘for his contributions to the development
of the methodology of high resolution nuclear mag-
netic resonance spectroscopy’. You could say
Richard Ernst achieved the same trick twice: by his
novel applications of 2D FT in both spectroscopy
and imaging.

Other Nobel Laureates associated with NMR
include Norman Ramsay (1989), a spectroscopy
pioneer who developed the theory of the chemical
shift, and Isidor Rabi (1944), Ramsey’s PhD mentor,
‘for his resonance method for recording the mag-
netic properties of atomic nuclei’.

Figure 1.5 Nobel prize-winners in NMR: (a) Purcell

1912–1997, (b) Bloch 1901–1999, (c) Bloembergen b. 1920

and (d) Ernst b. 1933. Courtesy of the Nobel Museum.

(a) (b)

(c) (d)



In all the chapters you will find the most basic infor-
mation in the main text. Advanced boxes, shaded in
blue, deal with various topics in more detail and are
placed at appropriate places through the text. If you’re
completely new to MR, we suggest you read straight
through skipping all the advanced boxes. When you
need to understand something a bit better, re-read the
chapter this time taking in the blue boxes. The topics
can seem to jump around a bit by splitting them up this
way, but we think it is a good compromise, which allows
us to include enough information for everyone,
whether you are a new radiographer hoping to make a
good impression in your new job, or a physicist study-
ing for a postgraduate degree.
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